散布図の説明を追加

This commit is contained in:
Kazuhiro MUSASHI 2020-06-14 12:25:09 +07:00 committed by Gitea
parent 6ba50b9731
commit e3b46746fa
1 changed files with 14 additions and 0 deletions

View File

@ -217,3 +217,17 @@ chart=true
- ヒートマップの最大の特徴は、塗り絵のように表を色で塗る点です。データを読んでわかるというよりは、データの傾向を表す色を見てわかる「表」に仕上がります。
- ヒートマップは数字を色に置き換えて、「どのデータ項目にデータが偏っているだろうか?」と考えます。つまりヒートマップが一番得意な表現方法は、量の「偏り」です。
- 細かく比較するのにはヒートマップは適していませんが、全体のデータの傾向を一瞬で把握するのには最適なのです。
### 散布図
散布図の特徴は以下のように説明されていました:
> 散布図は2つのデータとその2つのデータを束ねるデータ項目が用意されます。あとは、縦軸と横軸の2軸で構成された表にひたすらそのデータを点として打ち込むだけです。まさに「scatterなのです。たったそれだけなのに、データの傾向を把握できます。
散布図が表現するのは、2つのデータ項目の「関係」:
> 複数の項目を表現した点を俯瞰して見て「縦軸と横軸の相関(二つのデータ項目が密接に関わり合っている状態)はあるだろうか」と考えます。つまり散布図が一番得意な表現方法は、2つのデータ項目の「関係」です。散布図は、二つの観点から見たデータの関係性を最もわかりやすく図で表現できます。「相関」という言葉、あまり聞き慣れないですよね。一方の値が変化している時、他方の値も変化しているという2つの値の関連性を意味しています。「相関関係」とも表現します。
> 伝えたい内容は、2つのデータ項目間の比較でも推移でも偏りでもありません。「関係」というデータ同士のつながりです。